Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Sci Pollut Res Int ; 2021 Feb 26.
Article in English | MEDLINE | ID: covidwho-1103508

ABSTRACT

Northern Italy was the most affected by CoViD-19 compared to other Italian areas and comprises zones where air pollutants concentration was higher than in the rest of Italy. The aim of the research is to determine if particulate matter (PM) has been the primary cause of the high CoViD-19 spread rapidity in some areas of Northern Italy. Data of PM for all the 41 studied cities were collected from the local environmental protection agencies. To compare air quality data with epidemiological data, a statistical analysis was conducted identifying the correlation matrices of Pearson and Spearman, considering also the possible incubation period of the disease. Moreover, a model for the evaluation of the epidemic risk, already proposed in literature, was used to evaluate a possible influence of PM on CoViD-19 spread rapidity. The results exclude that PM alone was the primary cause of the high CoVid-19 spread rapidity in some areas of Northern Italy. Further developments are necessary for a better comprehension of the influence of atmospheric pollution parameters on the rapidity of spread of the virus SARS-CoV-2, since a synergistic action with other factors (such as meteorological, socio-economic and cultural factors) could not be excluded by the present study.

2.
Process Saf Environ Prot ; 146: 952-960, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1009799

ABSTRACT

Nitrogen dioxide (NO2) can have harmful effects on human health and can act as a precursor for the formation of other air pollutants in urban environment such as secondary PM2.5 and ozone. The lockdown measures for CoViD-19 allowed to simulate on a large scale the massive and prolonged reduction of road traffic (the main source for NO2 in urban environment). This work aims to selectively assess the maximum impact that total traffic blocking measures can have on NO2. For this reason, three megacities (London, Milan and Paris) were chosen which had similar characteristics in terms of climatic conditions, population, policies of urban traffic management and lockdown measures. 52 air quality control units have been used to compare data measured in lockdown and in the same periods of previous years, highlighting a significant decrease in NO2 concentration due to traffic (London: 71.1 % - 80.8 %; Milan: 8.6 % - 42.4 %; Paris: 65.7 % - 79.8 %). In 2020 the contribution of traffic in London, Milan and Paris dropped to 3.3 ± 1.3 µg m-3, 6.1 ± 0.8 µg m-3, and 13.4 ± 1.5 µg m-3, respectively. Despite the significant reduction in the NO2 concentration, in UT stations average NO2 concentrations higher than 40 µg m-3 were registered for several days. In order to reduce the pollution, the limitation of road traffic could be not enough, but a vision also aimed at rethink the vehicles and their polluting effects should be developed.

SELECTION OF CITATIONS
SEARCH DETAIL